Micro-grids and Smart Grid Applications

Working and Future Microgrid Application

MCAGCC 29 Palms

Gary Morrissett
UMCS Utilities Energy Management Supervisor
gary.Morrissett@usmc.mil 760-830-5128
August 15 2017
MCAGCC 29 Palms Microgrid
MCAGCC 29 Palms Energy

- **Base Power Basics**
 - Power production
 - 16.4 MW 2 Cogeneration plants
 - 8.7 MW PV systems 5.2 MW on line
 - 24.4 MW Total production capacity
 - Winter peak 15 MW – Summer 26 MW
 - Lowering minimum import, Inadvertent Export

- **Energy Security**
 - Contingency plans for loss of power and water
 - Electrical grid redundancy
 - Load reduction capabilities
 - Critical buildings and infrastructure backup generators
 - Cogen plants, PV power production, Grid upgrades with switches and substation communication
 - Microgrid operations central control strategy
 - EMCS DDC building monitor and control
 - Leatherneck substation 115KV line upgrade allows for multiple feeds and redundancy
 - 7 day backup fuel supply
 - **Cyber Security**

FY 17 Usage 1st - 3rd Qtr

- **Total Generation**: 54,485,404 Kwh
- **Actual**:
 - October: 1,000,000 Kwh
 - November: 2,000,000 Kwh
 - December: 3,000,000 Kwh
 - January: 4,000,000 Kwh
 - February: 5,000,000 Kwh
 - March: 6,000,000 Kwh
 - April: 7,000,000 Kwh
 - May: 8,000,000 Kwh
 - June: 9,000,000 Kwh
 - July: 10,000,000 Kwh
 - August: 11,000,000 Kwh
 - September: 12,000,000 Kwh

- **Estimated**:
 - October: 1,000,000 Kwh
 - November: 2,000,000 Kwh
 - December: 3,000,000 Kwh
 - January: 4,000,000 Kwh
 - February: 5,000,000 Kwh
 - March: 6,000,000 Kwh
 - April: 7,000,000 Kwh
 - May: 8,000,000 Kwh
 - June: 9,000,000 Kwh
 - July: 10,000,000 Kwh
 - August: 11,000,000 Kwh
 - September: 12,000,000 Kwh

KWH Used

- **Cogen**: 49,227,538 Kwh
- **Grid Power**: 17,677,973 Kwh
- **PV**: 5,257,866 Kwh

Total

- **8 month total**: 72,163,377 Kwh
Infrastructure

- **Cogen plant 1 $16M (ESPC)**
 7.2MW solar turbine Taurus 70
 Generates 55% of base load
 55,000 + MWH/year
 Collects 35 MBTU/Hr heat for heating and cooling of 60% of the base.

- **Cogen/utility plant 2 - $48M (MILCON)**
 9.2MW/ twin 4.6MW Mercury 50 twin turbine for peak following
 2 - 20 MBTU/hr boilers
 3- 650 ton Chillers 1 – Electric Centrifugal 2 – Absorption
 Expected generation full year 55,000+ MWH

- **PV systems (EIP/ARRA/MILCON)**
 8.7MW/ 54 locations tie to buildings
 Size of systems 20-1250 KW

- **Battery Energy Storage System (ESTCP)**
 654 KW located on 1200 KW system

- **Chiller plants (8 Central plants) (ESPC/MILCON)**
 100,000 tons cooling capacity
 1900 tons absorption cooling

- **Public Works Network (PWN)**
 - Fiber communications system
 - Designed, Installed and Maintained by Public Works Division
 - PWD IT and security requirements (Cyber Secured w ATO on EMCS)
 - Monitor/Control/Metering
 - 60 motorized switches
 - 11 Substations with 34.5 and 12.47 KV remote breaker control
 - 2 Cogeneration plants
 - 3 Chilled water plants + small chillers (10,000 tons cooling)
 - 54 PV systems 8.7 MW
 - 250+ building controls
 - Future Sewage Treatment plant
 - Future Water treatment and Well field operations
Microgrid

- Expectations of power and capabilities
- Decision points on what and how to power
- Back up power still required for critical facilities
- How far do you want to go? Base to building
- Can you Maintain the infrastructure you install?
- Limitations of the system? Turbines, grid
- Coordination studies and load analysis

- Complication of system and controls
 - Operations – How many people understand how the system works and how it is programmed?
 - Add on projects – New buildings and new electrical require more attention to specs and coordination studies
 - Maintain – How does the Govt Maintain the system and repair it once there is an issue? (support contracts)
 - Grid redundancy – Does switching affect operations and coordination? Yes requires active mapping and programs when changing loads

- Initial Microgrid test with ESTCP 2011
- MCAGCC has a working 10 MW Microgrid
 - Cogen plant (7MW) plus PV systems
 - Islanding functions
 - 2003 -Initial function had plant idle and then pick up loads. 3.5MW initial 1MW
 - 2006 Loads increased on 4 feeders 2MW which required changes
 - 2008-Comparison of generated power to loads on circuits
 - Upon loss of power if loads are more than generation then circuits will open until loads are less than generation
 - 1.2 MW PV system can be energized to aid in power
 - Segmentation controls installed (pass 2)
 - P 1232 MILCON
 - Base wide effort tying both plants and all substations into control efforts
 - 15 MW Cogen + 8.7MW PV = 24MW
 - Adding Battery energy storage for stability due to PV instability when islanded
P-1232: MicroGrid Expansion

- **Infrastructure Upgrades**
 - Gillespie Substation (~$3.2M)
 - (2) New, larger transformers
 - (2) New 34.5KV Breakers
 - Grounding upgrades
 - “AA” Substation (~$750K)
 - New 34.5KV Breaker
 - Grounding upgrades
 - “N” Substation (~$1.2M)
 - (2) New 34.5KV Breakers
 - SCADA System (~$750K)
 - (6) Additional SCADAMate switches
 - Update communication lines/pathways
 - New Graphics/Interfaces

- **Upgrades and reconfiguration of electrical grid communications & programming**
- **Upgrades to turbine control packages at each Cogen Plant**

Majority of the *effort* consists of programming and logic rather than building/installing equipment.
Microgrid Basic Design

Microgrid Features
- Bulk Grid Connected or Islanded
- Tri-Gen System
- CHP, Diesel & PV
- Building Loads as a Resource
- Fiber network to substations
- Load as a Resource
- Control loads substation/switch level

Base has islanded 14 Hrs on one Cogen plant in winter Manual ops

Microgrid Basic Design

- Substation level controls to manage loading
- fiber network to substations

Cogen Plant 1 – 7MW
- Building Loads/PV

Cogen Plant 2 - 8MW
- Co-Gen PLC
- Microgrid Controller
- Ethernet Switch
- RF Antennae

Islanded Loads/PV 10 MW
- 1.2 MW PV
- Building Loads/PV

Islanded Loads/PV 4 MW
- Fiber Network

13 Substations

Existing Fiber Network
- Ocotillo Switching
- Station Protection / Metering Relay

SCE Grid Tie
- Cisco 2960C
- Substation level controls to manage loading

Building Loads
- SCE Grid Tie
- LTC
- OCTILLO Switching Station Protection / Metering Relay
- Existing Fiber Network
- Cisco 2960C
- Ethernet Switch
- RF Antennae

Microgrid Features
- Bulk Grid Connected or Islanded
- Tri-Gen System
- CHP, Diesel & PV
- Building Loads as a Resource
- Fiber network to substations
- Load as a Resource
- Control loads substation/switch level
Cogen Plant 1 Breakers
Electrical Grid 34.5KV
Switches and Substations
Electrical Grid 12.47KV
Switches and Substations
Control and Communications Equipment
Lessons Learned

• Keep it simple
 – Simple design
 – Simple operations
 – Redundancy
 – Ongoing process

• Personnel
 – Training
 – Technical
 – Supervision

• Maintenance
 – Contracts support
 – No M no work!
 – Govt. cannot maintain these complex systems.

• Cyber security!!!!!

• Maximize generation and lower costs. $.13/Kwh grid vs $.06/Kwh

• Watch how your operators, Operate!

• Installation of equipment
 – MILCON
 – Local funding

• Communications
 – Critical for functionality
 – Electrical grid control speed
 – Communication protocols

• Personnel
 – Experience counts! Power and grid
 – No experience or training
 – IT background required

• Support tools DOE

• Involve local utilities!
 – No tariffs
 – New controls strategies

• Cogeneration makes it larger and easier. The more systems the more complex
PV Generation
• Effort was over 15 years over multiple projects
 – Had a great power and grid engineer
 – Energy side working controls and generation
 – Coordination and cooperation!

• Questions?